Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neuroendocrinol ; 34(10): e13187, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306198

RESUMO

Protein interacting with carboxyl terminus 1 (PICT-1) is a nucleolar protein shown to act as a tumor suppressor that interacts with PTEN, or in a contrasting manner to facilitate the accessibility of p53 to ubiquitination and degradation, thus to function as an oncogene. The aim of the study was to examine the potential role of PICT-1 in neuroendocrine neoplasm (NEN) tumorigenesis and response to mTOR inhibitor treatment. PICT-1 was overexpressed in medullary thyroid (TT) and pancreatic (BON1) NEN cell lines using lentiviral vector. Whereas in BON1 cells PICT-1 overexpression exhibited no significant impact, in TT cells it induced the appearance of p53ß lacking the C-terminus end. This was accompanied by a robust decrease in p21 expression and elevation of cell viability. Remarkably, PICT-1 overexpression completely reversed the reduction in cell viability of medullary thyroid neoplasm cells induced by everolimus, a therapeutic option for patients with progressive NENs. mTOR pathway investigations revealed that PICT-1 overexpression induced a reduction in PTEN expression and a robust increase in the expression level of phospho-Akt-Ser47 only partially inhibited by everolimus. These findings suggest a possible role of PICT-1 in the spliceosome machinery and provide functional involvement of PICT-1 in the complex network of mTOR.


Assuntos
Neoplasias da Glândula Tireoide , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Everolimo/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
São Paulo; s.n; s.n; 2022. 263 p. tab, graf.
Tese em Português | LILACS | ID: biblio-1379332

RESUMO

Os ribossomos são complexos ribonucleoproteicos conservados formados por duas subunidades assimétricas (40S e 60S em eucariotos) responsáveis pela tradução da informação genética e catálise da síntese proteica. A montagem destes complexos em eucariotos é mais bem descrita em S. cerevisiae, constituindo um processo celular energeticamente dispendioso e com múltiplas etapas. Ela tem origem no nucléolo com a transcrição do pré-rRNA 35S e requer o recrutamento hierárquico e transiente de cerca de 200 fatores de montagem para garantir a formação correta dos centros funcionais aptos à tradução. Neste processo, que se estende no núcleo e citoplasma, 79 proteínas ribossomais associam-se gradativamente à medida que o prérRNA é dobrado, modificado e processado. O processamento do pré-rRNA 35S consiste na remoção progressiva de espaçadores internos (ITS1 e ITS2) e externos (5ETS e 3ETS), que separam e flanqueiam os rRNAs maduros componentes de ambas subunidades ribossomais. A clivagem do ITS1 separa as vias de maturação do pré-60S e do pré-40S. O ITS2, que, em associação a fatores de montagem, forma uma estrutura denominada ITS2-foot, é o último espaçador do pré-60S a ser removido. A composição do ITS2-foot permanece inalterada no nucléolo até a transição entre o estado E nucleolar e a formação da partícula Nog2 nuclear. Nesta etapa, a liberação do fator Erb1 permite o recrutamento do fator de montagem conservado e essencial Nop53. Na base do ITS2-foot, Nop53 recruta o exossomo via RNA helicase Mtr4 para a clivagem 3-5 exonucleolítica de parte do ITS2 levando à desmontagem do ITS2-foot. O fato de Nop53 atuar como ponte entre dois grandes complexos e apresentar uma estrutura flexível e estendida nos levou a aprofundar a caracterização de seu papel durante a maturação do pré60S. Neste trabalho, usando análise proteômica quantitativa label-free baseada em espectrometria de massas, caracterizou-se o interactoma de Nop53, e avaliou-se o impacto da depleção de Nop53 no interactoma da subunidade catalítica do exossomo Rrp6 e na composição de pré-ribossomos representativos de quase todas as etapas de maturação do pré-60S. Em paralelo, foram caracterizados mutantes truncados de Nop53 e avaliada por pull-down a interação de Nop53 com componentes do exossomo. Os resultados obtidos mostraram que Nop53 é capaz de interagir com o cofator do exossomo Mpp6, sugerindo pontos adicionais de interação durante o recrutamento do exossomo ao pré-60S. A análise do interactoma de Rrp6 mostrou uma associação precoce do exossomo aos intermediários pré-ribossomais nucleolares mais iniciais, anteriores aos previamente descritos. Mudanças na composição dos intermediários pré-60S revelaram que a depleção de Nop53 afeta a transição entre o estado E e a partícula Nog2, afetando eventos tardios de maturação como o recrutamento de Yvh1. Comparando-se o efeito da depleção de Nop53 com o de mutantes nop53 desprovidos da região de recrutamento do exossomo, obtivemos evidências bioquímicas do papel estrutural de Nop53 na base do ITS2- foot. Em conjunto, estas observações, à luz de estruturas de intermediários pré-ribossomais recentemente descritas, nos permitiram concluir que o recrutamento de Nop53 ao pré-60S contribui para a estabilização de eventos de remodelamento do rRNA que antecedem a formação da partícula Nog2


Ribosomes are conserved ribonucleoprotein complexes formed by two asymmetric subunits (the 40S and the 60S in eukaryotes) responsible for translating the genetic information and catalyzing protein synthesis. The assembly of these complexes in eukaryotes is best described in S. cerevisiae. It is an energetically demanding, multi-step cellular process, that starts in the nucleolus with the transcription of the 35S pre-rRNA. It requires the hierarchical and transient recruitment of about 200 assembly factors to ensure the correct formation of the functional centers suitable for translation. In this process, which extends into the nucleus and cytoplasm, 79 ribosomal proteins gradually associate as the pre-rRNA is folded, modified, and processed. The 35S pre-rRNA processing happens with the progressive removal of internal (ITS1 and ITS2) and external (5'ETS and 3'ETS) transcribed spacers, which separate and flank the mature rRNA components of both ribosomal subunits. The cleavage at the ITS1 separates the pre-60S and pre40S maturation pathways. The ITS2, which in association with assembly factors constitutes a structure called ITS2-foot, is the last pre-60S spacer to be removed. The composition of the ITS2- foot remains unchanged in the nucleolus until the transition between the nucleolar state E and the nuclear Nog2 particle. At this stage, the release of Erb1 allows the recruitment of the conserved and essential assembly factor Nop53. At the base of the ITS2-foot, Nop53 recruits the exosome via the RNA helicase Mtr4 for the ITS2 3'-5' exonucleolytic cleavage leading to the ITS2-foot disassembly. The fact that Nop53 acts as a bridge between these two large complexes and exhibits a flexible and extended structure led us to further characterize its role in the pre-60S maturation. In this work, using mass spectrometry-based label-free quantitative proteomics, we characterized the interactome of Nop53, as well as the impact of the depletion of Nop53 on the interactome of the exosome catalytic subunit Rrp6 and on the composition of pre-ribosomes representative of almost all pre-60S maturation stages. In parallel, we characterized nop53 truncated mutants and evaluated the interaction of Nop53 with exosome components by pulldown assays. The results showed that Nop53 can interact with the exosome cofactor Mpp6, suggesting the contribution of additional points of interaction during the exosome recruitment to the pre-60S. The analysis of the Rrp6 interactome revealed an early association of the exosome with pre-ribosomal intermediates at very early nucleolar stages, before those previously described. Changes in the composition of pre-60S intermediates revealed that Nop53 depletion affects the transition between the state E and the Nog2 particle, affecting late pre-60S maturation events, such as the Yvh1 recruitment. Comparing the effect of Nop53 depletion with that of nop53 mutants lacking the exosome interacting region, we obtained biochemical evidence of the structural role of Nop53 at the base of the ITS2-foot. Altogether, and in light of recently described structures of pre-ribosomal intermediates, these observations allowed us to conclude that the recruitment of Nop53 to the pre-60S contributes to the stabilization of rRNA remodeling events that precede the formation of the Nog2 particle


Assuntos
Saccharomyces cerevisiae/classificação , Subunidades Ribossômicas/química , Ribonucleoproteínas , Proteínas Ribossômicas , Espectrometria de Massas/métodos , Nucléolo Celular , Subunidades Ribossômicas Maiores , Eucariotos
3.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502226

RESUMO

Autophagy is an evolutionally conserved process that recycles aged or damaged intracellular components through a lysosome-dependent pathway. Although this multistep process is propagated in the cytoplasm by the orchestrated activity of the mTOR complex, phosphatidylinositol 3-kinase, and a set of autophagy-related proteins (ATGs), recent investigations have suggested that autophagy is tightly regulated by nuclear events. Thus, it is conceivable that the nucleolus, as a stress-sensing and -responding intranuclear organelle, plays a role in autophagy regulation, but much is unknown concerning the nucleolar controls in autophagy. In this report, we show a novel nucleolar-cytoplasmic axis that regulates the cytoplasmic autophagy process: nucleolar protein NOP53 regulates the autophagic flux through two divergent pathways, the ZKSCAN3-dependent and -independent pathways. In the ZKSCAN3-dependent pathway, NOP53 transcriptionally activates a master autophagy suppressor ZKSCAN3, thereby inhibiting MAP1LC3B/LC3B induction and autophagy propagation. In the ZKSCAN3-independent pathway, NOP53 physically interacts with histone H3 to dephosphorylate S10 of H3, which, in turn, transcriptionally downregulates the ATG7 and ATG12 expressions. Our results identify nucleolar protein NOP53 as an upstream regulator of the autophagy process.


Assuntos
Autofagia , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Histonas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células HEK293 , Histonas/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fosforilação , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
4.
J Mol Neurosci ; 71(8): 1648-1663, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33990905

RESUMO

Deletions of the q13.3 region of chromosome 19 have been found commonly in all three main kinds of diffuse human malignant gliomas, powerfully demonstrating the existence of tumor suppressor genes in this region. Consistent with the previous studies, the most common deletion interval has been mapped to a roughly 4 Mb region of 19q13.3 between the APOC2 and HRC genes, between genetic markers D19S219 and D19S246. EML2 is a tumor suppressor gene that is located on 19q13.32 and is considerably methylated in high-grade gliomas. Notably, MIR330 gene that is situated within the non-coding intronic region of EML2 is also detected as an oncosuppressor-miR in a variety of cancers including gliomas. Additionally, glioma oncoprotein Bcl2L12 which is located on 19q13.33 is significantly overexpressed in glioblastoma multiform and has a pivotal role in cancer evolution and resistance to apoptosis. Other genes such as MIR519D and NOP53 are also discovered as tumor suppressor genes in gliomas which are located on 19q13.3 and 19q13.4, respectively. Therefore, we hypothesize that a CRISPR/AsCpf1-based genome engineering strategy might be utilized to attach these deleted sizeable chromosomal portions of genes coding tumor suppressors as vital parts of the chromosome 19 q-arm with the purpose of treatment of this chromosomal abnormality in gliomas. Also, we can concurrently employ the CRISPR-ddAsCpf1 strategy for the precise suppression of Bcl2L12 oncogene in glioma.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19/genética , Edição de Genes/métodos , Glioma/genética , Proteínas de Bactérias/metabolismo , Neoplasias Encefálicas/terapia , Deleção Cromossômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Genes Supressores de Tumor , Terapia Genética/métodos , Glioma/terapia , Humanos
5.
Pathol Oncol Res ; 26(1): 453-459, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30421090

RESUMO

NOP53 ribosome biogenesis factor (NOP53) is a nucleolar protein involved in oncogenesis/tumor suppression, cell cycle regulation, and cell death. Here, we investigated the role of NOP53 in the maintenance of normal nuclear shape and chromosomal stability. Depletion of NOP53 by shRNA caused abnormal nuclear morphology, including large nucleus, irregular nucleus, and multinucleated cells, and chromosomal instability resulting in micronucleus or nuclear bud formation. The abnormal nuclear shape and chromosomal instability were restored by re-expression of NOP53. We further showed that NOP53 was involved in chromosome congression in metaphase. Downregulation of NOP53 induced aberrant chromosome congression and spindle checkpoint activation, resulting in delayed mitosis and mitotic arrest. Thus, our findings demonstrated that the nucleolar protein NOP53 participated in mitotic progression and that dysregulated NOP53 expression caused chromosomal instability in cancer cells.


Assuntos
Instabilidade Cromossômica/fisiologia , Mitose/fisiologia , Proteínas Supressoras de Tumor/biossíntese , Neoplasias do Colo do Útero/patologia , Núcleo Celular , Regulação para Baixo , Feminino , Células HeLa , Humanos
6.
Genes (Basel) ; 10(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703244

RESUMO

Nonsyndromic familial non-medullary thyroid cancer (FNMTC) represents 3-9% of thyroid cancers, but the susceptibility gene(s) remain unknown. We designed this multicenter study to analyze families with nonsyndromic FNMTC and identify candidate susceptibility genes. We performed exome sequencing of DNA from four affected individuals from one kindred, with five cases of nonsyndromic FNMTC. Single Nucleotide Variants, and insertions and deletions that segregated with all the affected members, were analyzed by Sanger sequencing in 44 additional families with FNMTC (37 with two affected members, and seven with three or more affected members), as well as in an independent control group of 100 subjects. We identified the germline variant p. Asp31His in NOP53 gene (rs78530808, MAF 1.8%) present in all affected members in three families with nonsyndromic FNMTC, and not present in unaffected spouses. Our functional studies of NOP53 in thyroid cancer cell lines showed an oncogenic function. Immunohistochemistry exhibited increased NOP53 protein expression in tumor samples from affected family members, compared with normal adjacent thyroid tissue. Given the relatively high frequency of the variant in the general population, these findings suggest that instead of a causative gene, NOP53 is likely a low-penetrant gene implicated in FNMTC, possibly a modifier.


Assuntos
Genes Modificadores , Polimorfismo de Nucleotídeo Único , Neoplasias da Glândula Tireoide/genética , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Penetrância , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
7.
Viruses ; 10(4)2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29677136

RESUMO

NOP53 is a tumor suppressor protein located in the nucleolus and is translocated to the cytoplasm during infection by vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1), as shown in our previous study. Cytoplasmic NOP53 interacts with the retinoic acid-inducible gene I (RIG-I) to remove its K63-linked ubiquitination, leading to attenuation of type I interferon IFN-β. In the present study, we found no obvious translocation of NOP53 in infection by a mutant virus lacking ICP4 (HSV-1/d120, replication inadequate). Blocking cytoplasmic translocation of NOP53 by the deletion of its nuclear export sequence (NES) abrogated its ability to support viral replication. These results demonstrated that NOP53 redistribution is related to viral replication. It is interesting that treatment with poly (I:C) or RIG-I-N (a constitutively-active variant) directly induced NOP53 cytoplasmic translocation. To better assess the function of cytoplasmic NOP53 in viral replication, the NOP53-derived protein N3-T, which contains a human immunodeficiency virus (HIV)-derived cell-penetrating Tat peptide at the C-terminal region of N3 (residues 330⁻432), was constructed and expressed. The recombinant N3-T protein formed trimers, attenuated the expression of IFN-β and IFN-stimulated genes, as well as decreased the phosphorylation level of interferon regulatory factor 3 (IRF3). Furthermore, N3-T promoted the efficient replication of enveloped and non-enveloped DNA and RNA viruses belonging to 5 families. Our findings expand the understanding of the mechanism by which viruses utilize the nucleolar protein NOP53 for optimal viral replication.


Assuntos
Citoplasma/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral , Animais , Linhagem Celular , Peptídeos Penetradores de Células/química , Proteína DEAD-box 58/genética , Regulação para Baixo/efeitos dos fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Sinais de Exportação Nuclear/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Deleção de Sequência , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
8.
Protein Sci ; 26(1): 103-112, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27643814

RESUMO

The assembly of ribosomal subunits starts in the nucleus, initiated by co-transcriptional folding of nascent ribosomal RNA (rRNA) transcripts and binding of ribosomal proteins and assembly factors. The internal transcribed spacer 2 (ITS2) is a precursor sequence to be processed from the intermediate 27S rRNA in the nucleoplasm; its removal is required for nuclear export of pre-60S particles. The proper processing of the ITS2 depends on multiple associated assembly factors and RNases. However, none of the structures of the known ITS2-binding factors is available. Here, we describe the modeling of the ITS2 subcomplex, including five assembly factors Cic1, Nop7, Nop15, Nop53, and Rlp7, using a combination of cryo-electron microscopy and cross-linking of proteins coupled with mass spectrometry approaches. The resulting atomic models provide structural insights into their function in ribosome assembly, and establish a framework for further dissection of their molecular roles in ITS2 processing.


Assuntos
Modelos Moleculares , RNA Ribossômico/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Espectrometria de Massas , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Integr Plant Biol ; 57(10): 810-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26310197

RESUMO

Cell proliferation is a fundamental event essential for plant organogenesis and contributes greatly to the final organ size. Although the control of cell proliferation in plants has been extensively studied, how the plant sets the cell number required for a single organ is largely elusive. Here, we describe the Arabidopsis SMALL ORGAN 4 (SMO4) that functions in the regulation of cell proliferation rate and thus final organ size. The smo4 mutant exhibits a reduced size of organs due to the decreased cell number, and further analysis reveals that such phenotype results from a retardation of the cell cycle progression during organ development. SMO4 encodes a homolog of NUCLEOLAR PROTEIN 53 (NOP53) in Saccharomyces cerevisiae and is expressed primarily in tissues undergoing cell proliferation. Nevertheless, further complementation tests show that SMO4 could not rescue the lethal defect of NOP53 mutant of S. cerevisiae. These results define SMO4 as an important regulator of cell proliferation during organ growth and suggest that SMO4 might have been evolutionarily divergent from NOP53.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...